Дыхание

Дыхание

 Дыханием называется совокупность физиологических процессов, обеспечивающих поступление кислорода в организм, использование его тканями для окислительно-восстановительных реакций и выведения из организма углекислого газа. Дыхательная Функция осуществляется с помощью внешнего (легочного) дыхания, переноса кислорода к тканям и СО2 от них, а также газообмена между тканями и кровью.
 

Внешнее дыхание

Площадь альвеол равна 80-100 кв. м, а объем воздуха в них около 2-3 литров; объем воздухоносных путей — 150-180 мл. В обычных условиях альвеолы не спадаются, так как находящаяся на их внутренней поверхности жидкость содержит сурфактанты — вещества, снижающие поверхностное натяжение.

Газообмен между легкими и окружающей средой осуществляется за счет вдоха и выдоха. При вдохе объем легких увеличивается, давление в них становится ниже атмосферного, и воздух поступает в дыхательные пути. Этот процесс носит активный характер и обусловлен сокращением наружных межреберных мышц и опусканием (сокращением) диафрагмы, в результате чего объем легких возрастает на 250-300 мл. Во время выдоха объем грудной полости уменьшается, воздух в легких сжимается, давление в них становится выше атмосферного, и воздух выходит наружу. Выдох в спокойном состоянии осуществляется пассивно за счет тяжести грудной клетки и расслабления диафрагмы. Форсированный выдох происходит вследствие сокращений внутренних межреберных мышц, частично — за счет мышц плечевого пояса и брюшного пресса.

Важное значение для осуществления вдоха и выдоха имеет герметически замкнутая плевральная полость (щель), образованная висцеральным (покрывает легкое) и париетальным (выстилает грудную клетку изнутри) листками плевры и защищенная небольшим количеством жидкости. Давление в плевральной полости ниже атмосферного, которое еще больше снижается при вдохе, способствуя поступлению воздуха в легкие. При попадании воздуха или жидкости в плевральную полость легкие спадаются за счет их эластической тяги, дыхание становится невозможным и развиваются тяжелые осложнения — пневмогидроторакс.

Количество воздуха, находящегося в легких после максимального вдоха, составляет общую емкость легких, величина которой у взрослого человека равна 4-6 л. В общей емкости легких принято выделять четыре составляющих ее компонента: дыхательный объем, резервный объем вдоха и выдоха и остаточный объем.

Дыхательный объем — это количество воздуха, проходящего через легкие при спокойном вдохе (выдохе) и равное 400-500 мл. Резервный объем вдоха (1.5-3 л) составляет воздух, который можно вдохнуть дополнительно после обычного вдоха. Резервным объемом выдоха (1-1.5 л) называется объем воздуха, который еще можно выдохнуть после обычного выдоха. Остаточный объем (1-1.2 л) — это количество воздуха, которое остается в легких после максимального выдоха и выходит только при пневмотораксе. Сумма дыхательного воздуха, резервных объемов вдоха и выдоха составляет жизненную емкость легких (ЖЕЛ), равную 3.5-5 л; у спортсменов она может достигать 6 литров и более.

В покое человек делает 10-14 дыхательных циклов в 1 минуту, поэтому минутный объем дыхания (МОД) составляет 6-8 л. В состав дыхательного воздуха входит так называемое мертвое (вредное) пространство (120-150 мл), образованное воздухоносными путями (полости рта, носа, глотки, гортани, трахеи и бронхов), не участвующими в газообмене воздухом. Однако заполняющий это пространство воздух играет положительную роль в поддержании оптимальной влажности и температуры альвеолярного газа. Соотношение компонентов дыхательного цикла (длительность фаз вдоха и выдоха, глубина дыхания, динамика давления и скорость потоков в воздухоносных путях) характеризуют так называемый паттерн дыхания, который зависит от внешних и внутренних влияний на организм.

В процессе газообмена между организмом и атмосферным воздухом большое значение имеет вентиляция легких, обеспечивающая обновление состава альвеолярного газа. Интенсивность вентиляции зависит от глубины и частоты дыхания. Количественным показателем вентиляции легких служит минутный объем дыхания, определяемый как произведение дыхательного объема на число дыханий в минуту.

Легочная вентиляция обеспечивается работой дыхательных мышц. Эта работа связана с преодолением эластического сопротивления легких и сопротивления дыхательному потоку воздуха (неэластическое сопротивление). При МОД, равном 6-8 л * мин-1, на работу дыхательных мышц расходуется 5-10 мл * мин-1 О2. При физических нагрузках, когда МОД достигает 150200 л * мин-1, для обеспечения работы дыхательных мышц требуется уже около одного литра О2.Высокая кислородная стоимость дыхания невыгодна для организма, так как 02 не может использоваться для полезной работы.

Из воздуха альвеол 02 переходит в кровь, а в него поступает С02. Поэтому газовый состав их воздуха в процессе вентиляции легких неодинаков (табл. 1).

Выдыхаемый воздух состоит из смеси альвеолярного и воздуха вредного пространства, по составу мало отличающегося от атмосферного. Поэтому выдыхаемый воздух содержит больше 02 и меньше СО2 по сравнению с альвеолярным. Назначение легочной вентиляции состоит в поддержании относительного постоянства уровня парциального давления 02 и С02 в альвеолярном воздухе. При атмосферном давлении 760 мм рт. ст. р02 в нем равно 159 мм рт. ст. и рС02 — 0.2 мм рт. ст., а в альвеолярном воздухе — 102 мм рт. ст. и 40 мм рт. ст., соответственно. Характер легочной вентиляции определяется градиентом парциального давления этих газов в различных отделах дыхательных путей.

Таблица 1. Состав воздуха (в %) при спокойном дыхании.

Состав воздуха (в %) при спокойном дыхании

Обмен газов в легких и их перенос кровью

Переход 02 из альвеолярного воздуха в кровь и С02 из крови в альвеолы происходит только путем диффузии. Никакого механизма активного транспорта газов здесь не существует. Движущей силой диффузии являются разности (градиенты) парциальных давлений (напряжений) 02 и С02 по обе стороны альвеолярно-капиллярной мембраны или аэрогематического барьера Напряжение газов в различных средах представлено в таблице 2.

Кислород и углекислый газ диффундируют только в растворенном состоянии, что обеспечивается наличием в воздухоносных путях водяных паров, слизи и сурфактантов. В ходе диффузии через аэрогематический барьер молекулы растворенного газа преодолевают большое сопротивление, обусловленное слоем сурфактанта, альвеолярным эпителием, мембранами альвеол и капилляров, эндотелием сосудов, а также плазмой крови и мембраной эритроцитов.

Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотни миллионов) альвеол и большой их газообменной поверхностью (около 100 кв. м.), а также малой толщиной (около 1 мкм) альвеолярно-капиллярной мембраны. Диффузионная способность легких у человека примерно равна 25 мл О2 в 1 мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. Учитывая, что градиент р02 между притекающей к легким венозной кровью и альвеолярным воздухом составляет около 60 мм рт. ст., этого оказывается достаточно, чтобы за время прохождения крови через легочный капилляр (около 0.8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным р02.

Таблица 2. Напряжение 02 и С02 (мм рт. ст.) при спокойном дыхании воздухом.

Напряжение 02 и С02 (мм рт. ст.) при спокойном дыхании воздухом

Диффузия СО2 из венозной крови в альвеолы даже при сравнительно небольшом градиенте рС02 (около6 мм рт. ст.) происходит достаточно легко, так как растворимость С02 в жидких средах в 2025 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры рС02 в ней оказывается равным альвеолярному и составляет около 40 мм рт. ст.

Дыхательная функция крови прежде всего обеспечивается доставкой к тканям необходимого им количества 02. Кислород в крови находится в двух агрегатных состояниях: растворенный в плазме (0.3 об.%) и связанный с гемоглобином (около 20 об.%) — оксигемоглобин.

Отдавший кислород гемоглобин считают восстановленным или дезоксигемоглобином. Поскольку молекула гемоглобина содержит 4 частицы гема (железосодержащего вещества), она может связать четыре молекулы 02. Количество 02, связанного гемоглобином в 100 мл крови, носит название кислородной емкости крови и составляет около 20 мл 02. Кислородная емкость всей крови человека, содержащей примерно 750 г гемоглобина, приблизительно равна 1 л.

Каждому значению р02 в крови соответствует определенное процентное насыщение гемоглобина кислородом. Кривую зависимости процентного насыщения гемоглобина кислородом от величины парциального напряжения называют кривой диссоциации оксигемоглобина (рис. 1). Анализ хода этой кривой сверху вниз показывает, что с уменьшением р02 в крови происходит диссоциация оксигемоглобина, т. е. процентное содержание оксигемоглобина уменьшается, а восстановленного растет.

В различных условиях деятельности может возникать острое снижение насыщенности крови кислородом — гипоксемия. Причины гипоксемии весьма разнообразны. Она может развиваться вследствие снижения р02 в альвеолярном воздухе (произвольная задержка дыхания, вдыхание воздуха с пониженным р02), при физических нагрузках, а также при неравномерной вентиляции различных отделов легких.

Образующийся в тканях С02 диффундирует в тканевые капилляры, откуда переносится венозной кровью в легкие, где переходит в альвеолы и удаляется с выдыхаемым воздухом. Углекислый газ в крови (как и 02) находится в двух состояниях: растворенный в плазме (около 5% всего количества) и химически связанный с другими веществами (95%). СО, в виде химических соединений имеет три формы: угольная кислота (Н2С03), соли угольной кислоты (NaНС03) и в связи с гемоглобином (НвНСО2).

Кривая диссонации  оксигемоглобина в крови человека в покое

Рис. 1. Кривая диссонации оксигемоглобина в крови человека в покое.
А — содержание НЬ02 в артериальной крови, В — то же в венозной крови.

В крови тканевых капилляров одновременно с поступлением С02 внутрь эритроцитов и образованием в них угольной кислоты происходит отдача О2 оксигемоглобином. Восстановленный Н в легко связывает водородные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, восстановленный Нв венозной крови способствует связыванию СО2, а оксигемоглобин, образующийся в легочных капиллярах, облегчает его отдачу.

В состоянии покоя с дыханием из организма человека удаляется 230-250 мл С02 в 1 минуту. При удалении из крови С02 из нее уходит примерно эквивалентное число ионов водорода. Таким порядком дыхание участвует в регуляции кислотно-щелочного состояния во внутренней среде организма.

Обмен газов между кровью и тканями осуществляется также путем диффузии. Между кровью в капиллярах и межтканевой жидкостью существует градиент напряжения 02, который составляет 30-80 мм рт. ст., а напряжение СО2 в интерстициальной жидкости на 20-40 мм рт. ст. выше, чем в крови. Кроме того, на обмен 02 и С02 в тканях влияют площадь обменной поверхности, количество эритроцитов в крови, скорость кровотока, коэффициенты диффузии газов в тех средах, через которые осуществляется их перенос.

Артериальная кровь отдает тканям не весь 02. Разность между об.% О, в притекающей к тканям артериальной крови (около 20 об.%) и оттекающей от них венозной кровью (примерно 13 об.%) называется артерио- венозной разностью по кислороду (7 об.%). Эта величина служит важной характеристикой дыхательной функции крови, показывая, какое количество О2 доставляют тканям каждые 100 мл крови. Для того, чтобы установить, какая часть приносимого кровью О2 переходит в ткан и, вычисляют коэффициент утилизации (использования) кислорода. Его определяют путем деления величины артерио-венозной разности на содержание О2 в артериальной крови и умножения на 100. В покое для всего организма коэффициент утилизации О2 равен примерно 30-40%. Однако в миокарде, сером веществе мозга, печени и корковом слое почек он составляет 40-60%. При тяжелых физических нагрузках коэффициент утилизации кислорода работающими скелетными мышцами и миокардом достигает 80-90%.

В снабжении мышц О2 при тяжелой работе имеет определенное значение внутримышечный пигмент миоглобин, который связывает дополнительно 1.0-1.5 л 02. Связь О2 с миоглобином более прочная, чем с гемоглобином. Оксимиоглобин отдает О2 только при выраженной гипоксемии.

Регуляция дыхания

Регуляция внешнего дыхания представляет собой физиологический процесс управления легочной вентиляцией для обеспечения оптимального газового состава внутренней среды организма в постоянно меняющихся условиях его жизнедеятельности. Основную роль в регуляции дыхания играют рефлекторные реакции, возникающие в результате возбуждения специфических рецепторов, заложенных в легочной ткани, сосудистых рефлексогенных зонах и скелетных мышцах. Центральный аппарат регуляции дыхания представляют нервные образования спинного, продолговатого мозга и вышележащих сегментов ЦНС.

Гуморальная регуляция дыхания, созданная Д. Холденом и Д. Пристли около 50 лет тому назад, в последние годы не находит экспериментального подтверждения, большинством специалистов считается ошибочной и упоминается сейчас только в историческом плане. Это обусловлено открытием специфических рецепторов (механо- и хеморецепторов), а также других рефлекторных влияний на дыхательный центр. Поэтому все изменения внешнего дыхания в настоящее время объясняются только рефлекторными механизмами.

Дыхательный ритм и управление деятельностью дыхательных мышц генерируется работой дыхательного центра, представляющего собой совокупность взаимосвязанных нейронов ретикулярной формации продолговатого мозга и вышележащих отделов ЦНС, обеспечивающих тонкое приспособление дыхания к различным условиям внешней среды. Современные представления о работе дыхательного центра сводятся к тому, что часть дыхательных нейронов, объединенных в так называемую латеральную зону является эфферентной частью дыхательного центра и обеспечивает преимущественно фазу вдоха (инспираторные нейроны). Другая группа нейронов, составляющая медиальную зону, является афферентной частью дыхательного центра и обеспечивает фазу выдоха (экспираторные нейроны). Предназначение этой зоны заключается в контроле за периодичностью дыхательной ритмики, организуемой латеральной зоной.

В регуляции дыхания на основе механизма обратных связей принимают участие несколько групп механорецепторов легких.

Рецепторы растяжения легких находятся в гладких мышцах трахеи и бронхов. Адекватным раздражителем этих рецепторов является растяжение стенок воздухоносных путей.

Ирритантные рецепторы расположены в эпителиальном слое верхних дыхательных путей и раздражаются при изменении объема легких, а также при пневмотораксе, коллапсе и действии на слизистую трахеи и бронхов механических или химических раздражителей. При раздражении этих рецепторов у человека возникают кашлевой рефлекс, першение и жжение, учащение дыхания и бронхоспазм.

Джи-рецепторы расположены в стенках альвеол в местах их контакта с капиллярами, поэтому их еще называют юкстакапиллярные рецепторы легких. Эти рецепторы формируют частое поверхностное дыхание при патологии легких (воспаление, отек, повреждения легочной ткани), а также раздражаются при действии некоторых биологически активных веществ (никотин, гистамин и др.).

Проприорецепторы дыхательных мышц (межреберные мышцы, мышцы живота) обеспечивают усиление вентиляции легких при повышении сопротивления дыханию.

Поддержание постоянства газового состава внутренней среды организма регулируется с помощью центральных и периферических хеморецепторов.

Центральные хеморецепторы расположены в структурах продолговатого мозга, и они чувствительны к изменению рН межклеточной жидкости мозга. Эти рецепторы стимулируются ионами водорода, концентрация которых зависит от рС02 в крови. При снижении рН интерстициальной жидкости мозга (концентрация водородных ионов растет) дыхание становится более глубоким и частым. Напротив, при увеличении рН угнетается активность дыхательного центра и снижается вентиляция легких.

Периферические (артериальные) хеморецепторы расположены в дуге аорты и месте деления общей сонной артерии (каротидный синус). Эти рецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение рO2 в крови (гипоксемия).

Афферентные влияния с работающих мышц осуществляются благодаря раздражению проприорецепторов, что приводит к усилению дыхания рефлекторным путем. Повышение активности дыхательного центра в этом случае является результатом распространения возбуждения по различным отделам ЦНС.

Существенное воздействие на регуляцию дыхания оказывают и условнорефлекторные влияния. В частности, эмоциональные нагрузки, предстартовые состояния, гипнотические внушения, влияния индифферентных раздражителей, сочетавшихся ранее с избытком СО2, самообучение управлению дыханием подтверждают сказанное. Легочная вентиляция зависит также от особенностей гемодинамики (уровень АД, величина МОК), температуры внешней среды и других факторов.

sportzal.com

09.09.2008
просмотров 6822